Joonkyo Jung (Department of Computer Science, Yonsei University), Jisoo Jang (Department of Computer Science, Yonsei University), Yongwan Jo (Department of Computer Science, Yonsei University), Jonas Vinck (DistriNet, KU Leuven), Alexios Voulimeneas (CYS, TU Delft), Stijn Volckaert (DistriNet, KU Leuven), Dokyung Song (Department of Computer Science, Yonsei University)

Graphics Processing Units (GPUs) have become an indispensable part of modern computing infrastructure. They can execute massively parallel tasks on large data sets and have rich user space-accessible APIs for 3D rendering and general-purpose parallel programming. Unfortunately, the GPU drivers that bridge the gap between these APIs and the underlying hardware have grown increasingly large and complex over the years. Many GPU drivers now expose broad attack surfaces and pose serious security risks.

Fuzzing is a proven automated testing method that mitigates these risks by identifying potential vulnerabilities. However, when applied to GPU drivers, existing fuzzers incur high costs and scale poorly because they rely on physical GPUs. Furthermore, they achieve limited effectiveness because they often fail to meet dependency and timing constraints while generating and executing input events.

We present Moneta, a new ex-vivo approach to driver fuzzing that can statefully and effectively fuzz GPU drivers at scale. The key idea is (i) to recall past, in-vivo GPU driver execution states by synergistically combining snapshot-and-rehost and record-and-replay along with our proposed suite of GPU stack virtualization and introspection techniques, and (ii) to start parallel and stateful ex-vivo GPU driver fuzzing from the recalled states. We implemented a prototype of Moneta and evaluated it on three mainstream GPU drivers. Our prototype triggered deep, live GPU driver states during fuzzing, and found five previously unknown bugs in the NVIDIA GPU driver, three in the AMD Radeon GPU driver, and two in the ARM Mali GPU driver. These ten bugs were all confirmed by the respective vendors in response to our responsible disclosure, and five new CVEs were assigned.

View More Papers

A New PPML Paradigm for Quantized Models

Tianpei Lu (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Bingsheng Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Xiaoyuan Zhang (The State Key Laboratory of Blockchain and Data Security, Zhejiang University), Kui Ren (The State Key Laboratory of Blockchain and Data Security, Zhejiang University)

Read More

Mnemocrypt

André Pacteau, Antonino Vitale, Davide Balzarotti, Simone Aonzo (EURECOM)

Read More

ProvGuard: Detecting SDN Control Policy Manipulation via Contextual Semantics...

Ziwen Liu (Beihang University), Jian Mao (Beihang University; Tianmushan Laboratory; Hangzhou Innovation Institute, Beihang University), Jun Zeng (National University of Singapore), Jiawei Li (Beihang University; National University of Singapore), Qixiao Lin (Beihang University), Jiahao Liu (National University of Singapore), Jianwei Zhuge (Tsinghua University; Zhongguancun Laboratory), Zhenkai Liang (National University of Singapore)

Read More

BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS

Yinggang Guo (State Key Laboratory for Novel Software Technology, Nanjing University; University of Minnesota), Zicheng Wang (State Key Laboratory for Novel Software Technology, Nanjing University), Weiheng Bai (University of Minnesota), Qingkai Zeng (State Key Laboratory for Novel Software Technology, Nanjing University), Kangjie Lu (University of Minnesota)

Read More